The Permutable k-means for the Bi-Partial Criterion
نویسندگان
چکیده
منابع مشابه
Greedy bi-criteria approximations for k-medians and k-means
This paper investigates the following natural greedy procedure for clustering in the bi-criterion setting: iteratively grow a set of centers, in each round adding the center from a candidate set that maximally decreases clustering cost. In the case of k-medians and k-means, the key results are as follows. • When the method considers all data points as candidate centers, then selecting O(k log(1...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولthe search for the self in becketts theatre: waiting for godot and endgame
this thesis is based upon the works of samuel beckett. one of the greatest writers of contemporary literature. here, i have tried to focus on one of the main themes in becketts works: the search for the real "me" or the real self, which is not only a problem to be solved for beckett man but also for each of us. i have tried to show becketts techniques in approaching this unattainable goal, base...
15 صفحه اولA Constant-Factor Bi-Criteria Approximation Guarantee for k-means++
This paper studies the k-means++ algorithm for clustering as well as the class ofD sampling algorithms to which k-means++ belongs. It is shown that for any constant factor β > 1, selecting βk cluster centers by D sampling yields a constant-factor approximation to the optimal clustering with k centers, in expectation and without conditions on the dataset. This result extends the previously known...
متن کاملA Bi-Criteria Approximation Algorithm for k-Means
We consider the classical k-means clustering problem in the setting bi-criteria approximation, in which an algoithm is allowed to output βk > k clusters, and must produce a clustering with cost at most α times the to the cost of the optimal set of k clusters. We argue that this approach is natural in many settings, for which the exact number of clusters is a priori unknown, or unimportant up to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Informatica
سال: 2019
ISSN: 1854-3871,0350-5596
DOI: 10.31449/inf.v43i2.2090